
Automated System for Medication Stocks
Management

Adrian MIREA
Faculty of Automation and Computers

Politehnica University Timisoara
Timisoara, Romania

mirea.adrian89@gmail.com

Adriana ALBU
Department of Automation and Applied Informatics

Politehnica University Timisoara
Timisoara, Romania

adriana.albu@aut.upt.ro

Abstract – The resource management is one of the key factors
for any successful and safe activity. This is even more applicable
in medical field, where particular demands are necessary. Thus,
the physicians (and other medical stuff) are not only responsible
for specific medical interventions; they have to also provide the
health care environment that includes many other aspects. For
instance, one significant activity performed by the medical stuff is
the medication stock management. The purpose of this paper is
to describe an automated system aimed to help them with this
activity. This application is able, at the time being, to receive
information from peripheral equipment, to store it into a
database and to display all the actions performed by different
users of the system. This way, any placement or displacement of
medication vials and small dimension medical objects is
automatically detected and registered by the system.

Keywords – medication stock management; data acquisition;
data storage; medical informatics

I. INTRODUCTION

The automated system presented in this paper was created
for hospital establishments, especially for intensive care units
(but not only) and it is able to monitor medications with
standard weight, and small medical supplies. It has two main
sections:

⎯ The data acquisition part is ensured by an Arduino
Mega 2560 board that takes the data from peripheral
equipment (based on weight sensors and RFID –
radio-frequency identification), interprets it and sends
this information to the server. This part has already
been published by the same authors into a previous
paper [1].

⎯ The general context, the storage (into a database) and
the use of the acquired data are the subject of the
current paper.

As showed in [1], this system has been developed due to
the lack of an efficient mechanism for medication stock
management. The hospital units do not have hardware
equipment able to detect the placement/displacement of
medication. Currently, there are only some automated
dispensers. Also, the stock management momentarily in use
refers only to software tools that register the information into a
database. There is no general solution for this issue, even
though the subject is treated in recent scientific articles that

describe these aspects ([2] and [3], for instance, justify this
statement).

Regularly, at any end of a working shift, the medical staff
has to spend significant amount of time to refill the medication
stock that was used. The system discussed in this paper can be
a real help, saving physicians' time. Other advantages may
include the minimization of practice errors, omissions and
unsafe procedures. More than that, unauthorized use of
medication and medical supplies is impossible, thanks to an
authentication system based on access cards. There are two
types of users that can be identified through RFID tags; one is
an administrator and the other type are the regular users. These
user types define two states of the management system.

This paper has several sections that describe the proposed
automated system for medication stock management.
Therefore, the next section presents the architecture of the
entire system. Then, some details regarding the implementation
are provided in the third section. The results and the
conclusions are emphasized into the last two sections.

II. THE ARCHITECTURE OF THE SYSTEM

The entire project can be divided in two main parts, as
Fig. 1 shows. One sub-system is responsible for data
acquisition and interpretation, and the other one for the storage
and use of this information.

The most important element of the acquisition part [1] is
the Arduino Mega 2560 processing board [4], where the
central component is the microcontroller Atmel ATmega2560.
The medication vials with standard weight are monitored
using two load cells connected to an electric circuit that
includes the amplifier HX711 for weight sensors [5], which is
also an analog digital converter. The RFID tags (used on some
medical equipment and also for the authentication system) are
monitored by a circuit that contains the RFID-RC522 chip,
which is a RFID cards reader. In order to transfer the data
between the Arduino board and a local network, an Ethernet
Shield [6] is used. This way, the interactions with physical
environment can be stored for further use.

The second sub-system of the medication stock
management implies the storage and processing of relevant
data and actions performed by different users. A XAMPP
Apache distribution has been used for this purpose. It is an

2018 22nd International Conference on System Theory, Control and Computing (ICSTCC)

978-1-5386-4444-7/18/$31.00 ©2018 IEEE 529

open-source solution which contains the most common web
development technologies in a single package [7]. Its name
defines its components: X – cross-platform, A – Apache HTTP
server (one of the most frequently used web servers in the
world), M – MySQL (a management system for relational
databases), PP – PHP and Perl (scripting languages).
Therefore, this is a minimal configuration for web services
development; nevertheless, it is very suitable for testing and
distribution.

A database has been created in order to store the
information of the management system. It contains four tables
(Fig. 2 describes their fields and the way they are related).
These tables can be grouped in three categories, according to
the main function they are responsible for:

⎯ one table stores the information received directly
from the monitoring system: arduino.med;

⎯ two tables contain general data about the
management system: arduino.user and
arduino.sensor;

⎯ one table registers the actions that are performed
inside the system: arduino.actions.

A notable feature of any medication, besides its
commercial name, is the concentration of the active substance.
For this reason, the primary key of arduino.med table
contains these two elements. The table also has a foreign key

that makes the connection to the sensors, in order to
automatically identify the records, if a sensor is removed from
the system. These characteristics can be observed in the
following SQL code:

-- Indexes for table `med`
ALTER TABLE `med`
 ADD PRIMARY KEY (`Name`,`Concentration`)
USING BTREE,
 ADD KEY `SensorID` (`SensorID`);
-- Constraints for table `med`
ALTER TABLE `med`
 ADD CONSTRAINT `med_ibfk_1` FOREIGN KEY
(`SensorID`) REFERENCES `sensor` (`UID`) ON
DELETE CASCADE ON UPDATE CASCADE;

The arduino.actions table stores the most information
about the medication that are used or added, and about the
users who perform these actions. Therefore, it has the most
foreign key dependences. Moreover, the primary key is auto-
incremented.

-- Indexes for table `actions`
ALTER TABLE `actions`
 ADD PRIMARY KEY (`ID`),
 ADD KEY `UserID` (`UserID`),
 ADD KEY `UserBadgeID` (`UserBadgeID`),
 ADD KEY `MedName` (`MedName`,`MedConc`)
USING BTREE;
-- Constraints for table `actions`
ALTER TABLE `actions`
 ADD CONSTRAINT `actions_ibfk_1` FOREIGN KEY
(`UserID`) REFERENCES `user` (`UID`) ON DELETE
CASCADE ON UPDATE CASCADE,
 ADD CONSTRAINT `actions_ibfk_2` FOREIGN KEY
(`MedName`,`MedConc`) REFERENCES `med`
(`Name`, `Concentration`) ON DELETE CASCADE ON
UPDATE CASCADE,
 ADD CONSTRAINT `actions_ibfk_3` FOREIGN KEY
(`UserBadgeID`) REFERENCES `user` (`BadgeID`)
ON DELETE CASCADE ON UPDATE CASCADE;
-- AUTO_INCREMENT for table `actions`
ALTER TABLE `actions`
 MODIFY `ID` int(16) NOT NULL AUTO_INCREMENT,
AUTO_INCREMENT=183;

These two tables (med and actions) are updated by PHP
scripts stored on the Apache web server when specific
commands are received from the Arduino board via Ethernet
connection. The other two tables (user and sensor) require
direct access to the database in order to add records.

Fig. 1. The system's architecture.

Fig. 2. The storage sub-system.

530

III. THE IMPLEMENTATION

The application has a design that is based on a state
machine; the current state depends on the previous one and,
also, it will determine the next one. This is due to the fact that
there are two types of users and the allowed actions are
different for each of them. Fig. 3 is an UML model of these
actions. The transitions between states are executed only if the
conditions written in square brackets ('[...]') are
accomplished. Next, the actions written in curly brackets
('{...}') are executed once. Inside the three possible states
(LOGIN, ADMIN_SUPPLIES and MONITOR_SUPPLES) there are
some keywords that specify the moment and the way the
functions are executed: 'entry' – at the beginning of that
state, 'do' – repeatedly, while the application is into that
state, and 'exit' – when the state is left.

The structure presented in the Fig. 3 is matching an
Arduino sketch, which has two main functions: setup() –
called once, when the applications is powered on or after a
reset, and loop() – repeatedly called during the execution of
the application. These two functions have been described by
[1] from data acquisition point of view. Here are the functional
operations.

Following the design from the Fig. 3, the first functional

operations load from EEPROM persistent memory the weight
measured by the sensors (ReadEEPROMData()). The weight
values stored into the database are also necessary in order to
establish if, during a system power failure, some unacceptable
actions have been performed. The pseudocode function
checkDBSensors() executes the real function que-
ryDB_Weight(weightValue, sensorNo, operation,
CardID), which interrogates the database, returning the
weight value registered for that sensor. If the difference
between the two values (EEPROM and database) is greater
than 1.5g (EEPROMSuppliesDataNOK), then the application
is lead to ADMIN_SUPPLIES state, in order to adjust the
inaccurate values. If the weight values are all right
(EEPROMSuppliesDataOK), then the last logged user is
verified (checkLastLoggedUser()), to see if one is
authenticated and to determine what type of access that user
will have. There are three possible results here, also
emphasized by LEDs: lastLoggedIsAdmin (yellow LED),
lastLoggedUnknown (red LED) and lastLoggedIsUser
(green LED).

Once the setup is completed, the application starts the
repeatedly execution of its main functions. Most of the time,
the system will be in the LOGIN state, due to inactive times,
that request a re-authentication (after 60 seconds without

Fig. 3. The software design.

531

activity, a user is automatically logged off). The authentication
is performed using functions from MFRC522.h library, which
implement the pseudocode instructions scanForRFCards()
and newCardDetected() from the state diagram:

// Look for new cards
if(!mfrc522.PICC_IsNewCardPresent()){
 return;
}
// Select one of the cards
if(!mfrc522.PICC_ReadCardSerial()){
 return;
}
//Make sure scanned RF is not a TAG
if(mfrc522.uid.sak == 0){
 return;
}

There is an aspect that should be analyzed here: the
difference between an access card and a medical supply with
RFID tag, both of them being recognized the same way. This is
solved using the byte sak, which identifies a receiver of type
PICC_TYPE_MIFARE_UL (value 0) or PICC_TYPE_MI-
FARE_1K (value 8) or other card types, unused into this
project.

If the object is recognized as an access card, not a medical
supply, it has to be searched into the database in order to
identify its presence into the system and to decide if it is an
admin or a regular user. The serial communication is changed
from RFID mode to Ethernet Shield mode. Then, a connection
to Apache web server is established (for the actions that
involve the database). The IP address of the server and the
port 80 are used for this connection. There are two methods
available for sending information to a web server: GET and
POST. The GET one was used by this project because it is not
necessary to communicate secure information (passwords,
images, medical documents). It is also more suitable for the
PHP language. At the end of this part, the communication is
set back to RFID mode. The entire function is presented below:

unsigned char search_IDinDB(unsigned char
CardID){
 unsigned char returnValue=0;
 char c[1];
 /*ChipSelect the ETHERNET SHIELD*/
 ActivateSPIChip(0x01);
 delay(10);
 if(Ethernet.begin(mac_addr)==0){
 Ethernet.begin(mac_addr, my_addr);
 }
 if(client.connect(server_addr,80)){
 Serial.println("Connection OK");
 client.print("GET
/Arduino/checkCardID.php?");
 client.print("value1=");
 client.print(CardID);
 client.println(" HTTP/1.1");
 client.println("Host: 192.168.1.100");
 client.println("Connection: close");
 client.println(); //Empty line
 client.println(); //Empty line
 delay(100);
 if(client.connected()){
 if(finder.find("CardPos ")){
 returnValue = finder.getValue();

 }
 }
 if(returnValue==ADMIN_CARD_ID){
 returnValue = 0xFF;
 }
 client.stop();
 }
 else{
 Serial.println("Connection failed.");
 }
 delay(10);
 ActivateSPIChip(0x02);
 return returnValue;
}

According to the answer returned by search_IDinDB()
function, the application goes to ADMIN_SUPPLIES state (if
the returned value is 255 – 0xFF) or to MONITOR_SUPPLIES
state (for any other valid value that is found into the database).
Otherwise, the authentication process is repeated.

The application detects the changes of weight sensors. A
change that is more than 3.5g on any of the two weight sensors
is sent through the web server to the database and it is also
stored into the EEPROM memory. Besides the weight, the
function that performs this task will also send the ID of the
sensor and the operation that has to be executed by the PHP
script. There are three possible actions here: (i) the value of
that sensor is the weight of a medication unit and it is used for
initialization (in setup part), (ii) the value of that sensor is the
total weight and the number of units can be calculated,
knowing the unit weight (in MONITOR_SUPPLIES state or
ADMIN_SUPPLIES state), and (iii) the unit weight associated
to that sensor is reset (available in ADMIN_SUPPLIES state
only). The difference between the two available actions in
ADMIN_SUPPLIES state is made using the two buttons placed
on the development board.

Then, the presence of a RFID tag is scanned. There are two
possible operations, according to the current state of the
system: in ADMIN_SUPPLIES state the medical equipment is
added and in MONITOR_SUPPLIES state it is subtracted.

All this information (from weight sensors and from RFID
tags reader) is sent to the database in order to be stored for
further use. The table arduino.med is updated with data
about medication and the table arduino.actions registers
all the activities performed into the system.

The script that updates the quantity of medical equipment
identified by RFID tags is hereby presented as example. First,
the SQL command that searches the RFID tag into the
arduino.med table is created. If the tag is found, the
necessary information (medication name and quantity) is
selected. Also, the system time is stored in order to be added
into the arduino.actions table.

$sql = "SELECT currentQuantity,name FROM med
WHERE med.sensorID =".$_GET["sens"]." AND
$tagUsed > med.minTagID And $tagUsed <
med.maxTagID";
$retval = mysql_query($sql);
if($retval == FALSE){
 echo 0xFF;
}

532

while($row = mysql_fetch_array($retval,
MYSQL_NUM)){
 $currentQ = $row[0];
 $MedName = $row[1];
}
$time = date("Y-m-d H:i:s");

With this information, the value for medication quantity is
calculated. Then, according to the operation that is received
from Arduino platform (adding or subtracting), the SQL
command that updates the arduino.med table is created.

$finalQ = $currentQ - 1;
$sql = "UPDATE med SET currentQuantity=$finalQ
WHERE med.sensorID = ".$_GET["sens"]." AND
$tagUsed > med.minTagID And $tagUsed <
med.maxTagID";
$retval = mysql_query($sql);
if($retval == FALSE){
 echo "NO UPDATE done";
}
else {
 echo "UPDATE done";
}
$action = 'Take';

Once all this data is available and the server successfully
finished the previous command, the new SQL command that
updates the arduino.actions table can be created.

$sql = "INSERT into actions (UserID,
UserBadgeID, MedName, MedConc, MedTaken, Type,
DateStamp) VALUES ($UserID, $UserBadge,
'$MedName', 0, 1,'$action', '$time')";

These type of SQL functions are used into the entire project
for different actions. The database is manipulated by updating
or interrogating it.

IV. RESULTS

This prototype of an automated system for medication
stock management is functional now. In order to be used, an

initial configuration is necessary. It refers to the records of
tables med, sensor and user. Then, the application can be
used to manage the medication stock. Once the setup is
completed, the red color LED shows that nobody is
authenticated.

The first user should be an admin, in order to set the unit
weight for the medication monitored by the two weight
sensors. After a successful authentication, the yellow color
LED informs that the system is in the ADMIN_SUPPLIES state.
A unit of medication is placed on each load cell and the first
button in pressed. The information is sent to the database,
registering the unit weight of each medication. Then, the
medication vials with standard weight can be added to the
system, placing them to the load cells and pressing the second
button. The total weight is measured, and, using the unit
weight, the number of units can be calculated and registered
into the database. The medical equipment with RFID tags can
be added to the database bringing it in the magnetic field
generated by the RFID reader. The evolution of med table
during these actions performed in the ADMIN_SUPPLIES state
is presented in the Fig. 4.

A regular user is then authenticated to the system. The
green color LED indicates that the application is in the
MONITOR_SUPPLIES state. Now, any change that is notified
by the weight sensors is sent to the web server and the number
of medication taken from or placed on that load cell is
calculated and registered into the database. Also, if a medical
equipment with RFID tag is placed near the reader, then a
subtraction is executed from the total number of units of the
identified object.

All the actions performed in the system are also displayed
on the screen by a serial monitor. Fig. 5 emphasizes the
correlation between the displayed messages (the top part of the
figure) and the information registered into the database (the
bottom part of the figure).

Fig. 4. The evolution of table med during admin's actions.

533

V. CONCLUSIONS

The automated system for medication stock management
presented in this paper brings significant benefits for medical
staff and also for patients. It has intuitive functions and can be
easily used by physicians and nurses. Using it, they will
improve their professional life that, at this moment, is
overloaded with activities which are time and energy
consuming. One of these activities is the medication
manipulation. At the end of a working shift the current stock
must be verified and manually refilled. By the proposed
system, these actions are automatically performed because it
can detect and register the movement of standard weight
medication and of medical objects with RFID tags.

The prototype described here proves that such a
management system can actually be developed. There are
some features of this system that could be improved in the
next versions (from hardware and software point of view). For
instance, at the time being, it has only two load cells, but other
stands can be added. They also can have an expanded form, in
order to support a larger number of medication and more
accurate weight sensors can be used to react when small pills
are managed. Other improvements refer to some tools
(graphical interfaces) used by the admin when sensors or users
should be added, modified or eliminated. Right now, these
actions are performed directly on the database. The patients
could be also involved into this system if, for each medication
that is administrated to them, that information is sent directly
to their electronic healthcare record, too. It would be also
useful for such an application to be able to generate different
reports.

The system described by this paper is functional (the data
acquisition from peripheral equipment is accomplished, the
communication between the development board and the
storing equipment is working, and all the information is
available for further use). As the present paper shows, this
automated system for medication stock management has many
advantages that make it a reliable tool for use in medical
establishments. This project could be implemented on a wide-
scale, its necessity being proved by the every day activities
that are overloading the medical personnel with tasks that can
be faster and safer performed by such a system.

REFERENCES
[1] A. Mirea, A. Albu, “Acquisition of physical data in an automated system

for monitoring medication stocks”, The IEEE 12-th International
Symposium on Applied Computational Intelligence and Informatics, pp.
179-182, Mai 2018.

[2] J. Labuhn, P. Almeter, C. McLaughlin, P. Fields and B. Turner, “Supply
chain optimization at an academic medical center”, American Journal of
Health-System Pharmacy, vol. 74 (15), pp. 1184-1190, August 2017.

[3] L. Louden, J. M. Mirtallo, M. Worley, R. Naseman, A. Hafford and N.
V. Brown, “Efficiency analysis of a barcode-enabled and integrated
medication-tracking system”, American Journal of Health-System
Pharmacy, vol. 74 (23 Supplement 4), pp. S84-S89, December 2017.

[4] Steven F. Barret, “Arduino Microcontroller Processing for Everyone!”,
Third Edition, Morgan & Claypool Publishers, 2013, ISBN:
9781627052542.

[5] Load Cell Amplifier - HX711, SparkFun Electronics, available from:
https://www.sparkfun.com/products/13879, accessed: 2018.

[6] Getting Started with the Arduino Ethernet Shield, available from:
https://www.arduino.cc/en/Guide/ArduinoEthernetShield, last up-dated:
2017, accessed: 2018.

[7] D. Dvorski, “Installing, Configuring, and Developing with XAMPP”,
Skills Canada-Ontario, March 2007.

Fig. 5. The correlation between screen messages and the new records added to the actions table.

534

